Thiazides reduce brushite, but not calcium oxalate, supersaturation, and stone formation in genetic hypercalciuric stone-forming rats.

نویسندگان

  • David A Bushinsky
  • John R Asplin
چکیده

Over 59 generations, a strain of rats has been inbred to maximize urine calcium excretion. The rats now excrete eight to 10 times as much calcium as controls. These rats uniformly form calcium phosphate (apatite) kidney stones and have been termed genetic hypercalciuric stone-forming (GHS) rats. The addition of a common amino acid and oxalate precursor, hydroxyproline, to the diet of the GHS rats leads to formation of calcium oxalate (CaOx) kidney stones. Hydroxyproline-supplemented GHS rats were used to test the hypothesis that the thiazide diuretic chlorthalidone would decrease urine calcium excretion, supersaturation, and perhaps stone formation. All GHS rats received a fixed amount of a standard 1.2% calcium diet with 5% trans-4-hydroxy-l-proline (hydroxyproline) so that the rats would exclusively form CaOx stones. Half of the rats had chlorthalidone (Thz; 4 to 5 mg/kg per d) added to their diets. Urine was collected weekly, and at the conclusion of the study, the kidneys, ureters, and bladders were radiographed for the presence of stones. Compared with control, the addition of Thz led to a significant reduction of urine calcium and phosphorus excretion, whereas urine oxalate excretion increased. Supersaturation with respect to the calcium hydrogen phosphate fell, whereas supersaturation with respect to CaOx was unchanged. Rats that were fed Thz had fewer stones. As calcium phosphate seems to be the preferred initial solid phase in patients with CaOx kidney stones, the reduction in supersaturation with respect to the calcium phosphate solid phase may be the mechanism by which thiazides reduce CaOx stone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Re: Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria.

Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excr...

متن کامل

A Pilot Study of the Effect of Sodium Thiosulfate on Urinary Lithogenicity and Associated Metabolic Acid Load in Non-Stone Formers and Stone Formers with Hypercalciuria

BACKGROUND AND OBJECTIVES Sodium thiosulfate (STS) reduced calcium stone formation in both humans and genetic hypercalciuric stone forming (GHS) rats. We sought to measure urine chemistry changes resulting from STS administration in people. DESIGN SETTING PARTICIPANTS MEASUREMENTS: STS was given to healthy and hypercalciuric stone forming adults. Five normal non-stone forming adults (mean age 3...

متن کامل

Comparative value of orange juice versus lemonade in reducing stone-forming risk.

Foods that are high in citrate content generally are assumed to deliver alkali load when consumed irrespective of the accompanying cation. The object of this randomized, crossover study was to compare the effects of orange juice with those of lemonade on acid-base profile and urinary stone risks under controlled metabolic conditions. Thirteen volunteers (nine healthy subjects and four stone for...

متن کامل

Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.

Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% ...

متن کامل

A test of the hypothesis that the collecting duct calcium-sensing receptor limits rise of urine calcium molarity in hypercalciuric calcium kidney stone formers.

The process of kidney stone formation depends on an imbalance between excretion of water and insoluble stone-forming salts, leading to high concentrations that supersaturate urine and inner medullary collecting duct (IMCD) fluid. For common calcium-containing stones, a critical mechanism that has been proposed for integrating water and calcium salt excretions is activation of the cell surface c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2005